Hash Function Implementation Using Artificial Neural Network


  • V. R. Kulkarni Department of Information Science and Engineering Gogte Institute of Technology, VTU University Belgaum
  • Shaheen Mujawar




One-way Hash function, Neural network, Chaotic map, Plaintext Sensitivity


In this paper, an algorithm for one-way hash function construction based on a two-layer feed-forward neural network along with the piece-wise linear (pwl) chaotic map is proposed. Based on chaotic neural networks, a Hash function is constructed, which makes use of neural networks' diffusion property and chaos' confusion property. This function encodes the plaintext of arbitrary length into the hash value of fixed length (typically, 128-bit, 256-bit, or 512-bit). Theoretical analysis and experimental results show that this hash function is one-way, with high key sensitivity and plaintext sensitivity, and secure against birthday attacks or meet-in-the-middle attacks. These properties make it a suitable choice for data signature or authentication.


Download data is not yet available.


Metrics Loading ...



How to Cite

Kulkarni, V. R. ., & Mujawar, S. . (2020). Hash Function Implementation Using Artificial Neural Network. Scholars Journal of Science and Technology, 1(6), 175–184. https://doi.org/10.53075/Ijmsirq/1465679654779557